Microwave Engineering lec. 2

Wave Equation

Mathematical manipulation of Faraday’s law and Ampere-Maxwell law
leads directly to a wave equation for the electric and magnetic field.
Wave equation for the electric field

we know from Maxwell’s curl equations for the electric field

VXE = oB_ _oH 2.1
~ "9t Mo - (2.1)

VxH E+aD 2.2
X = —_— .
oF +— (2.2)

Where the conduction current density J in a given medium is defined

by J= oE and o isthe conductivity of the medium in S/m (UO/m).
Taking the curl of eqn. (2.1)

. ]
VX(VXE) = —n52 (VXH)

0 €dE
VX(VXE) = —ME(GE +W)

By applying vector identity:

VXVXE = V(V.E) — V2E

It is assumed that c = 0 and V.E = 0 as p,, = 0 from equation V. D= o
as D=¢E
0’E

—V2E = —ue—
”Eaﬂ

2 ‘E

Wave equation for the magnetic field
Similarly taking the curl of the following equation

— JOE
VXH = € —
at
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. 0 —
VX(VXH) = €57 (VXE)

aZ
Rairro

62H

(V.H) — V?H = —

ASV.H=0fromV.B=0

9°H

—V2H = —
lPYv3

d*’H
at?

V2H = pe—-| .. (2.4)

It should be noted that the “double del” or “del squared” is a scalar product
that is,

VV=V

which is a second-order operator in three different coordinate systems. In rectangu-
lar (cartesian) coordinates,
0 o

2:
v axt  dy* oz’

In cylindrical (circular) coordinates,
19 [ ¢ 62
t= byl
V= o ar( ) r 6(352
In spherical coordinates,

l 0 d 1 0 d 1 92
V= —| + 0 + —=
r? Br(r 6,,) r’sin 6 69(Sm 69) r’sin’ § o¢?
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Eqgns (2. 3) and (2.4) are the Helmholtz wave equation satisfied by electric
and magnetic fields.

Solution of wave equation

Both electric and magnetic fields are the functions of x,y,z and time (four
variables). All the components of E (Ey, Ey, E;) and H (Hy, Hy, H;) will be
satisfying the wave equation.

Let us assume that there is no spatial variation of y and x, % = a% = 0.
Let us assume that E is varying only in the direction of propagation i.e. (y-

direction)

9’E
at?

V2E, —ne—==10
To simplify Maxwell’s equations by writing them in terms of phasors just
like we use in circuit analysis, then
E,=E,e"

d%E,
at2

Then = —w?E,

V2E, + pew?E, =0

0%E,  0%E, . 0%E, 2
oz T oy t—2 t HEW'E, =0 .. (2.5)

Equ. (2.5) can easily be solved if the electric field is considered to vary
only in one direction i. e. direction of propagation. Such a wave is called
uniform plane wave characterized by uniform E, (uniform in magnitude as
well as in phase) over an infinite plane surface perpendicular to the direction
of propagation.

E,=E,eWF2 (2.6)
Where:

z — direction of propagation

w — angular frequency
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B —*> phase constant

Hence Maxwell’s Equations (phasor form) will be

— jeouH

V X E
V x H= (o + jwe)E

Plane Wave

A plane wave is a wave whose phase is constant over a set of planes

Uniform Plane Wave

A plane wave is a wave whose phase and magnitude are both constant. A
spherical wave in free space is a uniform plane wave. Electromagnetic

waves in free space are typical uniform Plane Wave.

A. Wave propagation in free space
Assume an electric field £, propagates in the z-direction, then:

o'F 0'F oF _ T -
ax*  ay* 8z’ o

Since only component of the electric field exists in the x-direction; then:

2
a Ex
oz

= —w’y,e,E,

The general solution of the 2nd order differential equation is:

The general solution of the 2nd order differential equation is:
EX - Ae-jwz\) Ho&

Introducing the time parameter, and use of trigonometric form, the real
part will be:
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E, = Acos(wt — wz.[uy,s,)

s Ey = Acosl|w(t — z Ju,e, )]
atz=0,and #1=0, E,.=E,

Ex =ExoCOSlUJ(f - Z\/FOE_O)J

E, 7 L
n = p‘—*— = 8—" = 1207w = 37702 n is intrinsic impedance of the
4 o .
medium
and
1
c = s
N Ho€o

C or Vp is phase velocity

N
I

o
p

Forfreespace &« =0, o=0 and f = W\l-&
a is the attenuation constant (Neper/m) or Np/m
We define y as the propagation constant
y=a+jB
LY = J Wy UeEo

The distance between corresponding adjacent points on the wave known as
the wave length (4)
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B. Wave propagation in lossless dielectric

In lossless dielectric 0 =0, &€ = &g, MU,

a=0, B=w/ue

w_ L I L Hr
_E_\/E, n_\/;—377\/:rﬂ
Y= a+jB
Y= JWwyuE
C. Wave propagation in lossy dielectric (¢ # 0)

In the lossy dielectric medium, we have (¢) and the charge

density:
J = oF
2 VxH=JT+ jwe€ = o€ + jweE = (0 + jwe)E

< . O
= * jw ./ 1 — s

The intrinsic impedance is now a complex quantity:
n = _‘&_ = \/_E 1 =
\I o + jwe £ \/1 . j({"wg)

2
_ ILE G
o = -_— 1 + _— -1
N 2 [N (0)5] i

2
ne 1 + _o_ + 1
2 |\ s |
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w 21
v, =— and A=-—

B B
D. Wave propagation in good conductors & skin depth

The general form of the propagation constant y is:

y = jw,/ps‘fl - ji—;

o . .
In conductors:; — >> 1, this results in:
we

3 s o
v = Jw.\/ps i

-

.y = J-J— Jasso

wuo
a=p= |7

The exponential factor e~%Z of the traveling wave becomes e~ =0.368

1
w
\/ 2
The inverse of the attenuation constant for good conductors is defined
as the skin depth & . The skin depth defines the distance over which a

plane traveling in a good conductor wave decays by an amount of e-1=
0.368.

when Zz =

1 1
5, = =

wue QA
2
The intrinsic impedance of a good conductor is given by
Jwy N7 X
n= ===+ 50 =+ /R

Where R is the surface impedance and is given by:
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